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SYNCHRONIZATION HARDWARE 

 All these solutions are based on the premise of locking; 

protecting critical regions through the use of locks. 

 The critical-section problem could be solved simply in a 

single-processor environment if we could prevent 

interrupts from occurring while a shared variable was 

being modified.  

 In this way, we could be sure that the current sequence of 

instructions would be allowed to execute in order without 

preemption. 

 No other instructions would be run, so no unexpected 

modifications could be made to the shared variable. This is 

often the approach taken by nonpreemptive kernels. 

 Unfortunately, this solution is not as feasible in a 

multiprocessor environment. 

 Disabling interrupts on a multiprocessor can be time 

consuming, since the message is passed to all the 

processors.  

 This message passing delays entry into each critical 

section, and system efficiency decreases.  

 Many modern computer systems therefore provide special 

hardware instructions that allow us either to test and 

modify the values atomically — that is, as one 

uninterruptible unit. 

 We discuss 2 special instructions to solve the critical-

section problem in a relatively simple manner. 

1. test_and_set() 

2. compare_and_swap() 
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 The important characteristic of this instruction is that it is 

executed atomically. 

 Thus, if two test_and_set() instructions are executed 

simultaneously (each on a different CPU), they will be 

executed sequentially in some arbitrary order. 

 We can implement mutual exclusion by declaring a 

boolean variable lock, initialized to false. 

 

 

 The compare_and_swap() instruction operates on three 

operands 
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 Regardless, compare_and_swap() always returns the 

original value of the variable value.  

 This instruction is also atomic.  

 

 A global variable (lock) is declared and is initialized to 0. 

 The first process that invokes compare_and_swap() will set 

lock to 1.  

 It will then enter its critical section, because the original 

value of lock was equal to the expected value of 0. 
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 Subsequent calls to compare_and_swap() will not succeed, 

because lock now is not equal to the expected value of 0. 

 When a process exits its critical section, it sets lock back to 

0, which allows another process to enter its critical section. 
 

 

MUTEX LOCKS 
 

 OS designers build software tools to solve the critical-

section problem.  

 The simplest of these tools is the mutex lock.  

 The term mutex is short for mutual exclusion. 

 We use the mutex lock to protect critical regions and thus 

prevent race conditions.  

 A process must acquire the lock before entering a critical 

section; it releases the lock when it exits the critical 

section.  

 The acquire() function acquires the lock, and the release() 

function releases the lock, 
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 A mutex lock has a boolean variable available whose value 

indicates if the lock is available or not.  

 If the lock is available, a call to acquire() succeeds, and the 

lock is then considered unavailable.  

 A process that attempts to acquire an unavailable lock is 

blocked until the lock is released.  

 The definition of acquire() is as follows: 

 

 The definition of release() is as follows: 

 

 Calls to acquire() or release() must be performed 

atomically. 

 Thus, mutex locks are often implemented using one of the 

hardware mechanisms; test_and_set() or 

compare_and_swap() 

 The main disadvantage of mutex lock is that it requires 

busy waiting.  

 While a process is in its critical section, any other process 

that tries to enter its critical section must loop continuously 

in the call to acquire(). 
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 In fact, this type of mutex lock is also called a spinlock 

because the process ―spins‖ while waiting for the lock to 

become available. 

 This continual looping is clearly a problem in a real 

multiprogramming system, where a single CPU is shared 

among many processes.  

 Busy waiting wastes CPU cycles that some other process 

might be able to use productively. 

 When locks are expected to be held for short times, 

spinlocks are useful. 

 

SEMAPHORES 

 

 It is more robust tool that can behave similarly to a mutex 

lock.  

 A semaphore S is an integer variable that is accessed only 

through two standard atomic operations: wait() and 

signal(). 

 The wait() operation was originally termed P (from the 

Dutch proberen, ―to test‖); signal() was originally called V 

(from verhogen, ―to increment‖).  

 The definition of wait() in a classical semaphore is as 

follows: 
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 All modifications to the integer value of the semaphore in 

the wait() and signal() operations must be executed 

indivisibly.  

 That is, when one process modifies the semaphore value, 

no other process can simultaneously modify that same 

semaphore value. 
 

Semaphore Usage 
 

 Two types of semaphores are used in OS 

1.  Binary semaphores  

2.  Counting semaphores. 

 The value of a binary semaphore can range only between 

0 and 1. Thus, binary semaphores behave similarly to 

mutex locks. 

  In fact, on systems that do not provide mutex locks, binary 

semaphores can be used instead for providing mutual 

exclusion. 

 The value of a counting semaphore can range over an 

unrestricted domain. 

 Counting semaphores can be used to control access to a 

given resource consisting of a finite number of instances.  
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 The semaphore is initialized to the number of resources 

available. Each process that wishes to use a resource 

performs a wait() operation on the semaphore (thereby 

decrementing the count).  

 When a process releases a resource, it performs a signal() 

operation (incrementing the count).  

 When the count for the semaphore goes to 0, all resources 

are being used. After that, processes that wish to use a 

resource will block until the count becomes greater than 0. 

 We can also use semaphores to solve various 

synchronization problems. 

 For example, consider two concurrently running processes: 

P1 with a statement S1 and P2 with a statement S2.  

 Suppose we require that S2 be executed only after S1 has 

completed.  

 We can implement this scheme readily by letting P1 and 

P2 share a common semaphore synch, initialized to 0.  

 In process P1, we insert the statements 

 
 Because synch is initialized to 0, P2 will execute S2 only 

after P1 has invoked signal(synch), which is after 

statement S1 has been executed. 
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Semaphore Implementation 
 

 Busy waiting is there in classical semaphores also 

 To overcome the need for busy waiting, we can modify 

the definition of the wait() and signal() operations as 

follows:  

 When a process executes the wait() operation and finds 

that the semaphore value is not positive, it must wait.  

 However, rather than engaging in busy waiting, the process 

can block itself.  

 The block operation places a process into a waiting queue 

associated with the semaphore, and the state of the process 

is switched to the waiting state.  

 Then control is transferred to the CPU scheduler, which 

selects another process to execute. 

 A process that is blocked, waiting on a semaphore S, 

should be restarted when some other process executes a 

signal() operation.  

 The process is restarted by a wakeup() operation, which 

changes the process from the waiting state to the ready 

state.  

 The process is then placed in the ready queue.  

 We define a modified semaphore as follows: 
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 Each semaphore has an integer value and a list of processes 

list. When a process must wait on a semaphore, it is added 

to the list of processes.  

 A signal() operation removes one process from the list of 

waiting processes and awakens that process. 

 Now, the wait() semaphore operation can be defined as 

 
 The signal() semaphore operation can be defined as 

 
 The block() operation suspends the process that invokes it. 

The wakeup(P) operation resumes the execution of a 

blocked process P.  

 These two operations are provided by the OS as basic 

system calls. 

 Note that in this implementation, semaphore values may 

be negative, whereas semaphore values are never negative 

under the classical definition of semaphores with busy 

waiting.  
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 If a semaphore value is negative, its magnitude is the 

number of processes waiting on that semaphore.  

 The list of waiting processes can be easily implemented by 

a link field in each process control block (PCB).  

 Each semaphore contains an integer value and a pointer to 

a list of PCBs.  

 One way to add and remove processes from the list so as to 

ensure bounded waiting is to use a FIFO queue 

 It is critical that semaphore operations be executed 

atomically.  

 We must guarantee that no two processes can execute 

wait() and signal() operations on the same semaphore at 

the same time. This is again a critical-section problem; 

 In a single-processor environment, we can solve it by 

simply inhibiting interrupts during the time the wait() and 

signal() operations are executing. 

 In a multi-processor environment, interrupts must be 

disabled on every processor and it may not be a good 

solution 

 We must provide alternative locking techniques - such as 

compare_and_swap() or spinlocks - to ensure that wait() 

and signal() are performed atomically.  

 We have to admit that we have not completely eliminated 

busy waiting with this definition of the wait() and signal() 

operations 

 But, we have limited busy waiting to the critical sections of 

the wait() and signal() operations, and these sections are 

short  
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Deadlocks and Starvation 
 

 The implementation of a semaphore with a waiting queue 

may result in a situation where two or more processes are 

waiting indefinitely for an event that can be caused only by 

one of the waiting processes.  

 When such a state is reached, these processes are said to be 

deadlocked. 

 To illustrate this, consider a system consisting of two 

processes, P0 and P1, each accessing two semaphores, S 

and Q, set to the value 1: 

 
 Suppose that P0 executes wait(S) and then P1 executes 

wait(Q). When P0 executes wait(Q), it must wait until P1 

executes signal(Q).  

 Similarly, when P1 executes wait(S), it must wait until P0 

executes signal(S).  

 Since these signal() operations cannot be executed, P0 and 

P1 are deadlocked. 

 We say that a set of processes is in a deadlocked state 

when every process in the set is waiting for an event that 

can be caused only by another process in the set. 
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 Another problem related to deadlocks is indefinite 

blocking or starvation, a situation in which processes wait 

indefinitely within the semaphore.  

 Indefinite blocking may occur if we remove processes 

from the list associated with a semaphore in LIFO order. 

 These are the drawbacks of using semaphores 
 

Priority Inversion 
 

 A scheduling challenge arises when a higher-priority 

process needs to read or modify kernel data that are 

currently being accessed by a lower-priority process 

 Since kernel data are typically protected with a lock, the 

higher-priority process will have to wait for a lower-

priority one to finish with the resource.  

 The situation becomes more complicated if the lower-

priority process is preempted in favor of another process 

with a higher priority. 

 Assume we have three processes - L, M, and H – whose 

priorities follow the order L < M < H.  

 Assume that process H requires resource R, which is 

currently being accessed by process L.  

 Ordinarily, process H would wait for L to finish using 

resource R.  

 However, now suppose that process M becomes runnable, 

which does not require R, thereby preempting process L.  

 Indirectly, a process with a lower priority - process M - has 

affected how long process H must wait for L to relinquish 

resource R. 

 This problem is known as priority inversion 
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 Typically these systems solve the problem by 

implementing a priority-inheritance protocol.  

 According to this protocol, all processes that are accessing 

resources needed by a higher-priority process inherit the 

higher priority until they are finished with the resources.  

 When they are finished, their priorities revert to their 

original values.  

 In the example above, a priority-inheritance protocol 

would allow process L to temporarily inherit the priority of 

process H, thereby preventing process M from preempting 

its execution. 

 When process L had finished using resource R, it would 

relinquish its inherited priority from H and assume its 

original priority. Because resource R would now be 

available, process H - not M - would run next. 

 


