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SYNCHRONIZATION HARDWARE 

 All these solutions are based on the premise of locking; 

protecting critical regions through the use of locks. 

 The critical-section problem could be solved simply in a 

single-processor environment if we could prevent 

interrupts from occurring while a shared variable was 

being modified.  

 In this way, we could be sure that the current sequence of 

instructions would be allowed to execute in order without 

preemption. 

 No other instructions would be run, so no unexpected 

modifications could be made to the shared variable. This is 

often the approach taken by nonpreemptive kernels. 

 Unfortunately, this solution is not as feasible in a 

multiprocessor environment. 

 Disabling interrupts on a multiprocessor can be time 

consuming, since the message is passed to all the 

processors.  

 This message passing delays entry into each critical 

section, and system efficiency decreases.  

 Many modern computer systems therefore provide special 

hardware instructions that allow us either to test and 

modify the values atomically — that is, as one 

uninterruptible unit. 

 We discuss 2 special instructions to solve the critical-

section problem in a relatively simple manner. 

1. test_and_set() 

2. compare_and_swap() 
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 The important characteristic of this instruction is that it is 

executed atomically. 

 Thus, if two test_and_set() instructions are executed 

simultaneously (each on a different CPU), they will be 

executed sequentially in some arbitrary order. 

 We can implement mutual exclusion by declaring a 

boolean variable lock, initialized to false. 

 

 

 The compare_and_swap() instruction operates on three 

operands 
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 Regardless, compare_and_swap() always returns the 

original value of the variable value.  

 This instruction is also atomic.  

 

 A global variable (lock) is declared and is initialized to 0. 

 The first process that invokes compare_and_swap() will set 

lock to 1.  

 It will then enter its critical section, because the original 

value of lock was equal to the expected value of 0. 



D e p t  o f  C S E ,  M B I T S   Page 4 
 

 Subsequent calls to compare_and_swap() will not succeed, 

because lock now is not equal to the expected value of 0. 

 When a process exits its critical section, it sets lock back to 

0, which allows another process to enter its critical section. 
 

 

MUTEX LOCKS 
 

 OS designers build software tools to solve the critical-

section problem.  

 The simplest of these tools is the mutex lock.  

 The term mutex is short for mutual exclusion. 

 We use the mutex lock to protect critical regions and thus 

prevent race conditions.  

 A process must acquire the lock before entering a critical 

section; it releases the lock when it exits the critical 

section.  

 The acquire() function acquires the lock, and the release() 

function releases the lock, 
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 A mutex lock has a boolean variable available whose value 

indicates if the lock is available or not.  

 If the lock is available, a call to acquire() succeeds, and the 

lock is then considered unavailable.  

 A process that attempts to acquire an unavailable lock is 

blocked until the lock is released.  

 The definition of acquire() is as follows: 

 

 The definition of release() is as follows: 

 

 Calls to acquire() or release() must be performed 

atomically. 

 Thus, mutex locks are often implemented using one of the 

hardware mechanisms; test_and_set() or 

compare_and_swap() 

 The main disadvantage of mutex lock is that it requires 

busy waiting.  

 While a process is in its critical section, any other process 

that tries to enter its critical section must loop continuously 

in the call to acquire(). 
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 In fact, this type of mutex lock is also called a spinlock 

because the process ―spins‖ while waiting for the lock to 

become available. 

 This continual looping is clearly a problem in a real 

multiprogramming system, where a single CPU is shared 

among many processes.  

 Busy waiting wastes CPU cycles that some other process 

might be able to use productively. 

 When locks are expected to be held for short times, 

spinlocks are useful. 

 

SEMAPHORES 

 

 It is more robust tool that can behave similarly to a mutex 

lock.  

 A semaphore S is an integer variable that is accessed only 

through two standard atomic operations: wait() and 

signal(). 

 The wait() operation was originally termed P (from the 

Dutch proberen, ―to test‖); signal() was originally called V 

(from verhogen, ―to increment‖).  

 The definition of wait() in a classical semaphore is as 

follows: 
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 All modifications to the integer value of the semaphore in 

the wait() and signal() operations must be executed 

indivisibly.  

 That is, when one process modifies the semaphore value, 

no other process can simultaneously modify that same 

semaphore value. 
 

Semaphore Usage 
 

 Two types of semaphores are used in OS 

1.  Binary semaphores  

2.  Counting semaphores. 

 The value of a binary semaphore can range only between 

0 and 1. Thus, binary semaphores behave similarly to 

mutex locks. 

  In fact, on systems that do not provide mutex locks, binary 

semaphores can be used instead for providing mutual 

exclusion. 

 The value of a counting semaphore can range over an 

unrestricted domain. 

 Counting semaphores can be used to control access to a 

given resource consisting of a finite number of instances.  
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 The semaphore is initialized to the number of resources 

available. Each process that wishes to use a resource 

performs a wait() operation on the semaphore (thereby 

decrementing the count).  

 When a process releases a resource, it performs a signal() 

operation (incrementing the count).  

 When the count for the semaphore goes to 0, all resources 

are being used. After that, processes that wish to use a 

resource will block until the count becomes greater than 0. 

 We can also use semaphores to solve various 

synchronization problems. 

 For example, consider two concurrently running processes: 

P1 with a statement S1 and P2 with a statement S2.  

 Suppose we require that S2 be executed only after S1 has 

completed.  

 We can implement this scheme readily by letting P1 and 

P2 share a common semaphore synch, initialized to 0.  

 In process P1, we insert the statements 

 
 Because synch is initialized to 0, P2 will execute S2 only 

after P1 has invoked signal(synch), which is after 

statement S1 has been executed. 
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Semaphore Implementation 
 

 Busy waiting is there in classical semaphores also 

 To overcome the need for busy waiting, we can modify 

the definition of the wait() and signal() operations as 

follows:  

 When a process executes the wait() operation and finds 

that the semaphore value is not positive, it must wait.  

 However, rather than engaging in busy waiting, the process 

can block itself.  

 The block operation places a process into a waiting queue 

associated with the semaphore, and the state of the process 

is switched to the waiting state.  

 Then control is transferred to the CPU scheduler, which 

selects another process to execute. 

 A process that is blocked, waiting on a semaphore S, 

should be restarted when some other process executes a 

signal() operation.  

 The process is restarted by a wakeup() operation, which 

changes the process from the waiting state to the ready 

state.  

 The process is then placed in the ready queue.  

 We define a modified semaphore as follows: 
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 Each semaphore has an integer value and a list of processes 

list. When a process must wait on a semaphore, it is added 

to the list of processes.  

 A signal() operation removes one process from the list of 

waiting processes and awakens that process. 

 Now, the wait() semaphore operation can be defined as 

 
 The signal() semaphore operation can be defined as 

 
 The block() operation suspends the process that invokes it. 

The wakeup(P) operation resumes the execution of a 

blocked process P.  

 These two operations are provided by the OS as basic 

system calls. 

 Note that in this implementation, semaphore values may 

be negative, whereas semaphore values are never negative 

under the classical definition of semaphores with busy 

waiting.  
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 If a semaphore value is negative, its magnitude is the 

number of processes waiting on that semaphore.  

 The list of waiting processes can be easily implemented by 

a link field in each process control block (PCB).  

 Each semaphore contains an integer value and a pointer to 

a list of PCBs.  

 One way to add and remove processes from the list so as to 

ensure bounded waiting is to use a FIFO queue 

 It is critical that semaphore operations be executed 

atomically.  

 We must guarantee that no two processes can execute 

wait() and signal() operations on the same semaphore at 

the same time. This is again a critical-section problem; 

 In a single-processor environment, we can solve it by 

simply inhibiting interrupts during the time the wait() and 

signal() operations are executing. 

 In a multi-processor environment, interrupts must be 

disabled on every processor and it may not be a good 

solution 

 We must provide alternative locking techniques - such as 

compare_and_swap() or spinlocks - to ensure that wait() 

and signal() are performed atomically.  

 We have to admit that we have not completely eliminated 

busy waiting with this definition of the wait() and signal() 

operations 

 But, we have limited busy waiting to the critical sections of 

the wait() and signal() operations, and these sections are 

short  
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Deadlocks and Starvation 
 

 The implementation of a semaphore with a waiting queue 

may result in a situation where two or more processes are 

waiting indefinitely for an event that can be caused only by 

one of the waiting processes.  

 When such a state is reached, these processes are said to be 

deadlocked. 

 To illustrate this, consider a system consisting of two 

processes, P0 and P1, each accessing two semaphores, S 

and Q, set to the value 1: 

 
 Suppose that P0 executes wait(S) and then P1 executes 

wait(Q). When P0 executes wait(Q), it must wait until P1 

executes signal(Q).  

 Similarly, when P1 executes wait(S), it must wait until P0 

executes signal(S).  

 Since these signal() operations cannot be executed, P0 and 

P1 are deadlocked. 

 We say that a set of processes is in a deadlocked state 

when every process in the set is waiting for an event that 

can be caused only by another process in the set. 
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 Another problem related to deadlocks is indefinite 

blocking or starvation, a situation in which processes wait 

indefinitely within the semaphore.  

 Indefinite blocking may occur if we remove processes 

from the list associated with a semaphore in LIFO order. 

 These are the drawbacks of using semaphores 
 

Priority Inversion 
 

 A scheduling challenge arises when a higher-priority 

process needs to read or modify kernel data that are 

currently being accessed by a lower-priority process 

 Since kernel data are typically protected with a lock, the 

higher-priority process will have to wait for a lower-

priority one to finish with the resource.  

 The situation becomes more complicated if the lower-

priority process is preempted in favor of another process 

with a higher priority. 

 Assume we have three processes - L, M, and H – whose 

priorities follow the order L < M < H.  

 Assume that process H requires resource R, which is 

currently being accessed by process L.  

 Ordinarily, process H would wait for L to finish using 

resource R.  

 However, now suppose that process M becomes runnable, 

which does not require R, thereby preempting process L.  

 Indirectly, a process with a lower priority - process M - has 

affected how long process H must wait for L to relinquish 

resource R. 

 This problem is known as priority inversion 
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 Typically these systems solve the problem by 

implementing a priority-inheritance protocol.  

 According to this protocol, all processes that are accessing 

resources needed by a higher-priority process inherit the 

higher priority until they are finished with the resources.  

 When they are finished, their priorities revert to their 

original values.  

 In the example above, a priority-inheritance protocol 

would allow process L to temporarily inherit the priority of 

process H, thereby preventing process M from preempting 

its execution. 

 When process L had finished using resource R, it would 

relinquish its inherited priority from H and assume its 

original priority. Because resource R would now be 

available, process H - not M - would run next. 

 


