
D e p t o f C S E , M B I T S Page 1

SYNCHRONIZATION HARDWARE

 All these solutions are based on the premise of locking;

protecting critical regions through the use of locks.

 The critical-section problem could be solved simply in a

single-processor environment if we could prevent

interrupts from occurring while a shared variable was

being modified.

 In this way, we could be sure that the current sequence of

instructions would be allowed to execute in order without

preemption.

 No other instructions would be run, so no unexpected

modifications could be made to the shared variable. This is

often the approach taken by nonpreemptive kernels.

 Unfortunately, this solution is not as feasible in a

multiprocessor environment.

 Disabling interrupts on a multiprocessor can be time

consuming, since the message is passed to all the

processors.

 This message passing delays entry into each critical

section, and system efficiency decreases.

 Many modern computer systems therefore provide special

hardware instructions that allow us either to test and

modify the values atomically — that is, as one

uninterruptible unit.

 We discuss 2 special instructions to solve the critical-

section problem in a relatively simple manner.

1. test_and_set()

2. compare_and_swap()

D e p t o f C S E , M B I T S Page 2

 The important characteristic of this instruction is that it is

executed atomically.

 Thus, if two test_and_set() instructions are executed

simultaneously (each on a different CPU), they will be

executed sequentially in some arbitrary order.

 We can implement mutual exclusion by declaring a

boolean variable lock, initialized to false.

 The compare_and_swap() instruction operates on three

operands

D e p t o f C S E , M B I T S Page 3

 Regardless, compare_and_swap() always returns the

original value of the variable value.

 This instruction is also atomic.

 A global variable (lock) is declared and is initialized to 0.

 The first process that invokes compare_and_swap() will set

lock to 1.

 It will then enter its critical section, because the original

value of lock was equal to the expected value of 0.

D e p t o f C S E , M B I T S Page 4

 Subsequent calls to compare_and_swap() will not succeed,

because lock now is not equal to the expected value of 0.

 When a process exits its critical section, it sets lock back to

0, which allows another process to enter its critical section.

MUTEX LOCKS

 OS designers build software tools to solve the critical-

section problem.

 The simplest of these tools is the mutex lock.

 The term mutex is short for mutual exclusion.

 We use the mutex lock to protect critical regions and thus

prevent race conditions.

 A process must acquire the lock before entering a critical

section; it releases the lock when it exits the critical

section.

 The acquire() function acquires the lock, and the release()

function releases the lock,

D e p t o f C S E , M B I T S Page 5

 A mutex lock has a boolean variable available whose value

indicates if the lock is available or not.

 If the lock is available, a call to acquire() succeeds, and the

lock is then considered unavailable.

 A process that attempts to acquire an unavailable lock is

blocked until the lock is released.

 The definition of acquire() is as follows:

 The definition of release() is as follows:

 Calls to acquire() or release() must be performed

atomically.

 Thus, mutex locks are often implemented using one of the

hardware mechanisms; test_and_set() or

compare_and_swap()

 The main disadvantage of mutex lock is that it requires

busy waiting.

 While a process is in its critical section, any other process

that tries to enter its critical section must loop continuously

in the call to acquire().

D e p t o f C S E , M B I T S Page 6

 In fact, this type of mutex lock is also called a spinlock

because the process ―spins‖ while waiting for the lock to

become available.

 This continual looping is clearly a problem in a real

multiprogramming system, where a single CPU is shared

among many processes.

 Busy waiting wastes CPU cycles that some other process

might be able to use productively.

 When locks are expected to be held for short times,

spinlocks are useful.

SEMAPHORES

 It is more robust tool that can behave similarly to a mutex

lock.

 A semaphore S is an integer variable that is accessed only

through two standard atomic operations: wait() and

signal().

 The wait() operation was originally termed P (from the

Dutch proberen, ―to test‖); signal() was originally called V

(from verhogen, ―to increment‖).

 The definition of wait() in a classical semaphore is as

follows:

D e p t o f C S E , M B I T S Page 7

 All modifications to the integer value of the semaphore in

the wait() and signal() operations must be executed

indivisibly.

 That is, when one process modifies the semaphore value,

no other process can simultaneously modify that same

semaphore value.

Semaphore Usage

 Two types of semaphores are used in OS

1. Binary semaphores

2. Counting semaphores.

 The value of a binary semaphore can range only between

0 and 1. Thus, binary semaphores behave similarly to

mutex locks.

 In fact, on systems that do not provide mutex locks, binary

semaphores can be used instead for providing mutual

exclusion.

 The value of a counting semaphore can range over an

unrestricted domain.

 Counting semaphores can be used to control access to a

given resource consisting of a finite number of instances.

D e p t o f C S E , M B I T S Page 8

 The semaphore is initialized to the number of resources

available. Each process that wishes to use a resource

performs a wait() operation on the semaphore (thereby

decrementing the count).

 When a process releases a resource, it performs a signal()

operation (incrementing the count).

 When the count for the semaphore goes to 0, all resources

are being used. After that, processes that wish to use a

resource will block until the count becomes greater than 0.

 We can also use semaphores to solve various

synchronization problems.

 For example, consider two concurrently running processes:

P1 with a statement S1 and P2 with a statement S2.

 Suppose we require that S2 be executed only after S1 has

completed.

 We can implement this scheme readily by letting P1 and

P2 share a common semaphore synch, initialized to 0.

 In process P1, we insert the statements

 Because synch is initialized to 0, P2 will execute S2 only

after P1 has invoked signal(synch), which is after

statement S1 has been executed.

D e p t o f C S E , M B I T S Page 9

Semaphore Implementation

 Busy waiting is there in classical semaphores also

 To overcome the need for busy waiting, we can modify

the definition of the wait() and signal() operations as

follows:

 When a process executes the wait() operation and finds

that the semaphore value is not positive, it must wait.

 However, rather than engaging in busy waiting, the process

can block itself.

 The block operation places a process into a waiting queue

associated with the semaphore, and the state of the process

is switched to the waiting state.

 Then control is transferred to the CPU scheduler, which

selects another process to execute.

 A process that is blocked, waiting on a semaphore S,

should be restarted when some other process executes a

signal() operation.

 The process is restarted by a wakeup() operation, which

changes the process from the waiting state to the ready

state.

 The process is then placed in the ready queue.

 We define a modified semaphore as follows:

D e p t o f C S E , M B I T S Page 10

 Each semaphore has an integer value and a list of processes

list. When a process must wait on a semaphore, it is added

to the list of processes.

 A signal() operation removes one process from the list of

waiting processes and awakens that process.

 Now, the wait() semaphore operation can be defined as

 The signal() semaphore operation can be defined as

 The block() operation suspends the process that invokes it.

The wakeup(P) operation resumes the execution of a

blocked process P.

 These two operations are provided by the OS as basic

system calls.

 Note that in this implementation, semaphore values may

be negative, whereas semaphore values are never negative

under the classical definition of semaphores with busy

waiting.

D e p t o f C S E , M B I T S Page 11

 If a semaphore value is negative, its magnitude is the

number of processes waiting on that semaphore.

 The list of waiting processes can be easily implemented by

a link field in each process control block (PCB).

 Each semaphore contains an integer value and a pointer to

a list of PCBs.

 One way to add and remove processes from the list so as to

ensure bounded waiting is to use a FIFO queue

 It is critical that semaphore operations be executed

atomically.

 We must guarantee that no two processes can execute

wait() and signal() operations on the same semaphore at

the same time. This is again a critical-section problem;

 In a single-processor environment, we can solve it by

simply inhibiting interrupts during the time the wait() and

signal() operations are executing.

 In a multi-processor environment, interrupts must be

disabled on every processor and it may not be a good

solution

 We must provide alternative locking techniques - such as

compare_and_swap() or spinlocks - to ensure that wait()

and signal() are performed atomically.

 We have to admit that we have not completely eliminated

busy waiting with this definition of the wait() and signal()

operations

 But, we have limited busy waiting to the critical sections of

the wait() and signal() operations, and these sections are

short

D e p t o f C S E , M B I T S Page 12

Deadlocks and Starvation

 The implementation of a semaphore with a waiting queue

may result in a situation where two or more processes are

waiting indefinitely for an event that can be caused only by

one of the waiting processes.

 When such a state is reached, these processes are said to be

deadlocked.

 To illustrate this, consider a system consisting of two

processes, P0 and P1, each accessing two semaphores, S

and Q, set to the value 1:

 Suppose that P0 executes wait(S) and then P1 executes

wait(Q). When P0 executes wait(Q), it must wait until P1

executes signal(Q).

 Similarly, when P1 executes wait(S), it must wait until P0

executes signal(S).

 Since these signal() operations cannot be executed, P0 and

P1 are deadlocked.

 We say that a set of processes is in a deadlocked state

when every process in the set is waiting for an event that

can be caused only by another process in the set.

D e p t o f C S E , M B I T S Page 13

 Another problem related to deadlocks is indefinite

blocking or starvation, a situation in which processes wait

indefinitely within the semaphore.

 Indefinite blocking may occur if we remove processes

from the list associated with a semaphore in LIFO order.

 These are the drawbacks of using semaphores

Priority Inversion

 A scheduling challenge arises when a higher-priority

process needs to read or modify kernel data that are

currently being accessed by a lower-priority process

 Since kernel data are typically protected with a lock, the

higher-priority process will have to wait for a lower-

priority one to finish with the resource.

 The situation becomes more complicated if the lower-

priority process is preempted in favor of another process

with a higher priority.

 Assume we have three processes - L, M, and H – whose

priorities follow the order L < M < H.

 Assume that process H requires resource R, which is

currently being accessed by process L.

 Ordinarily, process H would wait for L to finish using

resource R.

 However, now suppose that process M becomes runnable,

which does not require R, thereby preempting process L.

 Indirectly, a process with a lower priority - process M - has

affected how long process H must wait for L to relinquish

resource R.

 This problem is known as priority inversion

D e p t o f C S E , M B I T S Page 14

 Typically these systems solve the problem by

implementing a priority-inheritance protocol.

 According to this protocol, all processes that are accessing

resources needed by a higher-priority process inherit the

higher priority until they are finished with the resources.

 When they are finished, their priorities revert to their

original values.

 In the example above, a priority-inheritance protocol

would allow process L to temporarily inherit the priority of

process H, thereby preventing process M from preempting

its execution.

 When process L had finished using resource R, it would

relinquish its inherited priority from H and assume its

original priority. Because resource R would now be

available, process H - not M - would run next.

